Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Orthop J Sports Med ; 11(7): 23259671231183416, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37560612

RESUMEN

Background: Regular walking in different types of footwear may increase the mediolateral shear force, knee adduction moment, or vertical ground-reaction forces that could increase the risk of early development of knee osteoarthritis (OA). Purpose: To compare kinematic and kinetic parameters that could affect the development of knee OA in 3 footwear conditions. Study Design: Controlled laboratory study. Methods: A total of 40 asymptomatic participants performed walking trials in the laboratory at self-selected walking speeds under barefoot (BF), minimalistic (MF), and neutral (NF) footwear conditions. Knee joint parameters were described using discrete point values, and continuous curves were evaluated using statistical parametric mapping. A 3 × 1 repeated-measures analysis of variance was used to determine the main effect of footwear for both discrete and continuous data. To compare differences between footwear conditions, a post hoc paired t test was used. Results: Discrete point analyses showed a significantly greater knee power in NF compared with MF and BF in the weight absorption phase (P < .001 for both). Statistical parametric mapping analysis indicated a significantly greater knee angle in the sagittal plane at the end of the propulsive phase in BF compared with NF and MF (P = .043). Knee joint moment was significantly greater in the propulsive phase for the sagittal (P = .038) and frontal planes (P = .035) in BF compared with NF and MF and in the absorption phase in the sagittal plane (P = .034) in BF compared with MF and NF. A significant main effect of footwear was found for anteroposterior (propulsion, ↑MF, NF, ↓BF [P = .008]; absorption, ↑BF, MF, ↓NF [P = .001]), mediolateral (propulsion, ↑MF, NF, ↓BF [P = .005]; absorption, ↑NF, MF, ↓BF [P = .044]), and vertical (propulsion, ↑NF, BF, ↓MF [P = .001]; absorption, ↑MF, BF, ↓NF [P < .001]) ground-reaction forces. Knee power showed a significant main effect of footwear (absorption, ↑NF, MF, ↓BF [P = .015]; propulsion, ↑MF, NF, ↓BF [P = .039]). Conclusion: Walking in MF without sufficient accommodation affected kinetic and kinematic parameters and could increase the risk of early development of knee OA.

2.
J Appl Biomech ; 38(4): 263-270, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35894909

RESUMEN

The study purpose was to investigate whether there is a relationship between the Achilles tendon (AT) length, moment arm length, and the foot strike pattern (FP) change during an exhaustive run (EXR) in nonrearfoot FP runners. Twenty-eight runners were recruited and divided into 2 groups (highly trained/moderately trained) according to their weekly training volume. Participants underwent the graded exercise test, the EXR with biomechanical analysis at the beginning, and at the end, and the magnetic resonance imaging scan of the AT. Correlations were used to assess associations between FP change (value of the difference between end and beginning) and the selected performance and AT variables. AT length significantly correlated with the FP change according to foot strike angle (r = -.265, P = .049). The AT moment arm length significantly correlated with the FP change according to strike index during EXR (r = -.536, P = .003). Multiple regression showed that AT length was a significant predictor for the FP change according to foot strike angle if the second predictor was the graded exercise test duration and the third predictor was training group association. These results suggest that a runner's training volume, along with a longer AT and AT moment arm appear to be associated with the ability to maintain a consistent FP during EXR by nonrearfoot FP runners.


Asunto(s)
Tendón Calcáneo , Carrera , Tendón Calcáneo/diagnóstico por imagen , Fenómenos Biomecánicos , Prueba de Esfuerzo , Pie , Humanos
3.
Gait Posture ; 91: 240-246, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753001

RESUMEN

BACKGROUND: Although footstrike pattern (FP) may not be a factor influencing running performance, 11-75% of world-class distance runners use a non-rearfoot FP. However, little attention has been paid to describe the effect of running volume on FP changes when a runner is fatigued. RESEARCH QUESTION: Does the training volume provide an adequate stimulus to mitigate FP changes during an exhaustive run in non-rearfoot, habitual minimalist footwear runners? METHODS: The objective of this study was to compare FP between non-rearfoot, habitual minimalist footwear runners with a moderate training volume (MT) and a high training volume (HT) during an exhaustive run on a motorized treadmill. Based on their weekly training volume (distance), twenty-eight runners were arranged into two groups paired by height and age. At the first visit, runners underwent a VO2max test to acquire their velocity for the exhaustive run. During the second visit, biomechanical and physiological analysis of the beginning and the end phase of the exhaustive run was done. RESULTS: The frontal plane foot angle, the sagittal plane ankle angle at the initial contact (IC), and the foot eversion ROM showed a significant interaction effect (P < 0.05). Additionally, the sagittal plane footstrike angle, the frontal plane foot angle, the sagittal plane ankle angle, knee flexion angle at IC and foot eversion ROM showed a significant effect of fatigue (P < 0.05). Finally, the frontal plane foot angle, the sagittal plane footstrike angle, the sagittal plane ankle angle, and the knee flexion angle showed significant group effects (P < 0.05). SIGNIFICANCE: The training volume affects the footstrike pattern of non-rearfoot, habitual minimalist footwear runners when they are fatigued. The highly trained runners maintained their ankle angle throughout the exhaustive running protocol, whereas the moderately trained group changed the frontal and sagittal plane characteristics of their footstrike pattern.


Asunto(s)
Carrera , Tobillo , Articulación del Tobillo , Fenómenos Biomecánicos , Pie , Humanos , Zapatos
4.
Artículo en Inglés | MEDLINE | ID: mdl-33297585

RESUMEN

Far too little attention has been paid to health effects of air pollution and physical (in)activity on musculoskeletal health. The purpose of the Healthy aging in industrial environment study (4HAIE) is to investigate the potential impact of physical activity in highly polluted air on musculoskeletal health. A total of 1500 active runners and inactive controls aged 18-65 will be recruited. The sample will be recruited using quota sampling based on location (the most air-polluted region in EU and a control region), age, sex, and activity status. Participants will complete online questionnaires and undergo a two-day baseline laboratory assessment, including biomechanical, physiological, psychological testing, and magnetic resonance imaging. Throughout one-year, physical activity data will be collected through Fitbit monitors, along with data regarding the incidence of injuries, air pollution, psychological factors, and behavior collected through a custom developed mobile application. Herein, we introduce a biomechanical and musculoskeletal protocol to investigate musculoskeletal and neuro-mechanical health in this 4HAIE cohort, including a design for controlling for physiological and psychological injury factors. In the current ongoing project, we hypothesize that there will be interactions of environmental, biomechanical, physiological, and psychosocial variables and that these interactions will cause musculoskeletal diseases/protection.


Asunto(s)
Contaminación del Aire , Envejecimiento Saludable , Carrera , Adolescente , Adulto , Anciano , Fenómenos Biomecánicos , Protocolos Clínicos , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...